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Many real networks have been found to have a rich degree of symmetry, which is a universal structural
property of complex networks, yet has been rarely studied so far. One of the fascinating problems related to
symmetry is exploration of the origin of symmetry in real networks. For this purpose, we summarized the
statistics of local symmetric motifs that contribute to local symmetry of networks. Analysis of these statistics
shows that the symmetry of complex networks is a consequence of similar linkage pattern, which means that
vertices with similar degrees tend to share common neighbors. An improved version of the Barabaśi-Albert
model integrating similar linkage pattern successfully reproduces the symmetry of real networks, indicating
that similar linkage pattern is the underlying ingredient that is responsible for the emergence of symmetry in
complex networks.
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I. INTRODUCTION

In the past decade, we have witnessed great progress in
research on complex networks �1–13�. Previous studies have
primarily focused on finding various statistical properties of
real networks, such as small-world properties �3,5,8�, power-
law degree distribution �4�, network motifs �9�, assortative
mixing �11�, self-similarity �6�, community structure �10,12�,
and hierarchical structure �13�. Based on these properties,
many network models, such as the Barabaśi-Albert �BA� �4�
and Watts-Strogatz models �8�, have been proposed to help
to predict the evolution of a network. However, one property
of network structure, symmetry, has been rarely studied
�14,15�.

In general, symmetry is defined as invariance under a
group of transformations �16�. The term “symmetry” has
been widely used to describe the harmony, beauty, and unity
in nature for a long time in an implicit way �17�. In modern
physics, symmetry properties have been attributed to physi-
cal laws and physical phenomena �18�. In our studies, we
will focus on the symmetry in network structures. Similar to
the concept of other symmetries in physics, symmetry of
network structure also characterizes invariance under certain
transformations. However, the detailed definition of symme-
try in a network structure is different from that of other sym-
metries in physics in the meaning of “invariance” and “trans-
formation.” Specifically, symmetry in network structures
characterizes the invariance of adjacency of vertices under
permutations on the vertices, which implies that invariance
of the symmetry in a network structure is the adjacency re-
lation among the vertices and the transformation is the per-
mutations on the vertices.

Contrary to the traditional belief that almost all graphs are
asymmetric �19–21�,1 various real complex networks have
been shown to have a rich degree of symmetry �22,23�. As a

ubiquitous phenomenon, the existence of symmetry in real
networks strongly begs an explanation, since existing ingre-
dients, such as continuous growth and preferential attach-
ment �4� dominating the construction of network structures,
are not dedicated to interpreting the origination of symmetry
in real networks.

Recently, symmetry in real networks has attracted some
research interest. The work in �23� utilizes symmetry infor-
mation to characterize the structural heterogeneity of real
networks. Reference �22� has verified that the network
growth model �24� can produce treelike symmetry, and found
that, given that the network is growing as a tree, preferential
attachment increases network symmetry. However, many
real networks whose structures are far away from trees are
also symmetric �22,23�. Hence, symmetry in a majority of
real networks has not been reasonably explained yet.

To explore the origin of symmetry in real networks, we
summarize various statistics of the local symmetric motifs
contributing to the symmetry of real networks. Through the
analysis of these statistics, we show that similar linkage
pattern,2 which indicates that vertices having similar proper-
ties, for example degree, tend to have similar neighbors, is a
ubiquitous law dominating the construction of structures of a
variety of real networks. For example, in a friendship net-
work, it is widely believed that persons with similar proper-
ties such as educational background, interest, age, would
probably have common friends. Based upon these concepts,
we propose an improved version of the BA model integrating
the ingredient of similar linkage pattern. The proposed model
successfully reproduces the symmetry in real networks, im-

1This could be understood asymptotically that the proportion of
graphs on n vertices that are asymmetric goes to 1 as n tends to �.

2There may be confusion between similar linkage pattern and as-
sortative mixing. Both these two concepts focus on the behavior of
those vertices having similar properties. However, assortative mix-
ing emphasizes the interlinkage between these vertices, while simi-
lar linkage pattern concerns only neighbor-sharing of these vertices;
whether these vertices are interlinked is not significant in similar
linkage pattern.
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plying that similar linkage pattern is responsible for the for-
mation of symmetry in real networks.

II. SYMMETRY IN NETWORKS

First, we will give a brief introduction to symmetry in
complex networks. The theory of graph symmetry has been
well developed in the context of algebraic graph theory
�20,21,25,26�, where the basic idea is to explore the interplay
between graph theory and algebra, including matrix algebra
and group theory �26�.

A. Preliminaries

A graph or network is denoted by G=G�V ,E�, where V is
the set of vertices and E�V�V is the set of edges. If
�v1 ,v2��E, v1 and v2 are adjacent. A one-to-one mapping,
or bijective mapping, from a vertex set V onto itself is called
a permutation acting on V. Since a permutation is a mapping,
we can define product or composition operation on permuta-
tions. Let f ,g�S�V�, where S�V� is the set of all permuta-
tions acting on V; then the product or composition h= f �g �or
simply fg� is the mapping h :V→V for which xh= �xf�g.
Among all the permutations in S�V�, some permutations can
preserve the adjacency of the vertices, and these permuta-
tions are called automorphisms acting on the vertex set.
More formally, an automorphism of a graph G is a permuta-
tion g of the vertex set of G with the property that, for any
vertices u and v, vg is adjacent to ug if and only if v is
adjacent to u. We denote the set of automorphisms of graph
G as Aut�G�, and we have Aut�G�= �g :g�S�V� and Eg

=E�, where Eg= ��ug ,vg� : �u ,v��E�. The set of automor-
phisms under the product of permutations forms a group
�20�. In general, a network is considered as asymmetric if its
underlying graph contains only an identity permutation; oth-
erwise, the network is symmetric.

Next, we will introduce the concepts of automorphism
partition and orbit. Given the automorphism group acting on
vertex set V, we can get a partition P= �V1 ,V2 , . . . ,Vk� such
that x is equivalent to y if and only if ∃g�Aut�G�, such that
xg=y. This partition is called automorphism partition, and
each cell of the partition is called an orbit of Aut�G�. An
orbit is trivial if it contains only a single vertex; otherwise,
the orbit is nontrivial.

We illustrate the above concepts through an example. Fig-
ure 1 shows a graph with seven vertices. Thus the number of
all possible permutations acting on vertices of this graph is
7! =5040. Among all these permutations, some cannot pre-
serve the adjacency of the vertex set. For example, the per-
mutation g that maps vertex 3 and vertex 4 to each other
while fixing any other vertices cannot preserve the original

adjacency, since vertices 1 and 2 are not adjacent to vertex 4.
However, we also can find some nontrivial automorphisms,
e.g., the permutation h that only switches vertex 1 and vertex
2 with each other will preserve the adjacency. Furthermore,
utilizing some tools, such as GAP �27�, or NAUTY �28�, we
can find all automorphisms for this graph �a total of 12 au-
tomorphisms can be found�. Given these automorphisms, we
can find all orbits and construct the automorphism partition.
For example, since automorphism g transforms vertex 1 into
vertex 2, these two vertices will belong to the same orbit.
Similarly, all orbits can be found and the resulting automor-
phism partition is P={�1,2� , �3� , �4� , �5,6 ,7�} �vertices in
each orbit are marked with the same color in Fig. 1�.

Since nontrivial automorphisms have been found, the
graph in Fig. 1 should be characterized as symmetric. How-
ever, merely characterizing a network as symmetric or asym-
metric is not sufficient for real applications. If a network is
symmetric, measures of the extent to which the network is
symmetric will provide us more information about the sym-
metry in the network. Thus, it is necessary to explore mea-
surements of symmetry in networks.

B. Measures of symmetry in networks

Intuitively, the size of the automorphism group �G
= �Aut�G�� �29� gives a direct quantification of the abundance
of symmetry in a network. In order to compare the symmetry
of networks with different sizes, �G is used in �22�, defined
as

�G = ��G/N!�1/N, �1�

where N is the number of vertices in the network. �G mea-
sures the symmetry relative to the maximal number of pos-
sible automorphisms of a network with N vertices.

In our studies, another symmetry measure �G is also used,
which is based upon the intuitive observation that a network
having more nontrivial orbits will be more symmetric. This
observation motivates us to define �G as the ratio of the
number of vertices in all nontrivial orbits to the vertex num-
ber of the network. Formally, �G could be defined as

�G =

�
1�i�k,�Vi��1

�Vi�

N
, �2�

where Vi is the ith orbit in the automorphism partition.
As an example, we perform some preliminary analysis on

symmetry in circles with n vertices �usually denoted as Cn�.
In algebraic graph theory �20,21,25,26�, it is well known that
the automorphisms of an undirected cycle Cn form a group
Dn, called the dihedral group, whose size has been proved to
be 2n. Thus, for such a circle Cn, we have �G= �2n /n!�1/n

= �2 / �n−1�!�1/n. It is easy to check that all vertices of a circle
belong to the same orbit. Consequently, we have �G=100%.
Hence, it is reasonable to believe that Cn is richly symmetric.

Note that, in the community of complex networks, mea-
suring symmetry in complex networks has also attracted
some research interest, such as measurements of degree sym-
metry �14� and its extensions �15�. All these symmetry mea-
sures are vertex oriented, not graph oriented, and are used to
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FIG. 1. �Color online� Illustration of a symmetric graph. Verti-
ces with the same color belong to the same orbit.
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measure the local centrality of vertices. However, the sym-
metry measures used in this paper are all graph oriented; this
allows measurement of the symmetry of the whole network,
or the ability for a network to preserve vertex adjacency
under possible permutations acting on the vertex set.

C. Introduction to data sets

To study the symmetry of real networks, we use the fol-
lowing well-known real network data sets. The first is the
electrical power grid of the western United States �8�, in
which the vertices represent generators, transformers, and
substations, and the edges correspond to the high-voltage
transmission lines between them. We refer to this network as
the USPowerGrid. The second data set is the citation net-
work of the high-energy physics theory �hep-th� community
�30�. In the citation network, each vertex represents an article
and a directed edge from article A to article B indicates that
A cites B. We refer to this data set as arXiv. The third data set
is the internet at the autonomous system level �31�. Each
vertex in the network represents an autonomous system, and
each vertex has a certain relationship with other vertices,
such as consumer, provider, peer, or sibling. We refer to this
data set as InternetAS. The fourth data set is BioGrid, which
represents protein-gene interactions of various species. Inter-
action data can be represented as a network, where each
vertex represents a protein or a gene, and each edge repre-
sents the interaction between theses proteins or genes. We
use interaction network of five species including Saccharo-
myces cerevisiae �SAC�, Caenorhabditis elegans �CAE�,
Drosophila melanogaster �DRO�, Homo sapiens �HOM�,
and Mus musculus �MUS�.

III. SIMILAR LINKAGE PATTERN

In this section we will show that similar linkage pattern is
a ubiquitous law that holds across many structures of real
networks. For this purpose, we first need to have a deeper
insight into the local substructures contributing to the abun-
dance of symmetry of real networks. In the mathematical
context, such symmetric substructures of real networks can
be represented by symmetric bicliques.

A. Symmetric bicliques

Let V1 and V2 be two disjoint vertex sets. Then KV1,V2
is a

complete bipartite graph, if vertices in the same subset are
not adjacent and every two vertices from different subsets
are adjacent. Furthermore, if a complete bipartite KV1,V2

is a
subgraph of G�V ,E� and for each v�V1, NK�v�=NG�v�=V2,
we call KV1,V2

a symmetric biclique3 �32� of G, where NK�v�
and NG�v� are the neighbor sets of vertex v in graphs K and
G, respectively. This definition of the symmetric biclique im-
plies that, for each vertex v�V1, v is adjacent to all vertices

in V2 and only adjacent to vertices in V2, whether in sub-
graph K or supergraph G.

If graph G�V ,E� contains a symmetric biclique KV1,V2
, we

can find n ! �n= �V1�� automorphisms of graph G, such that
each of these automorphisms only permutes vertices in V1
with the other vertices in V−V1 fixed. Furthermore, all these
automorphisms form a subgroup of the automorphism group
of G. Then according to the Lagrange theorem4 in group
theory, the above subgroup will contribute with a factor n! to
the size of the whole automorphism group. Thus, the sym-
metric biclique KV1,V2

becomes a local symmetric motif �32�
contributing to the symmetry of the network. Figure 2 illus-
trates two such bicliques.

If we do not care about what V1 and V2 are, we also use
Ki,j to denote KV1,V2

, where �V1�= i and �Vj�= j. The set con-
sisting of all Ki,j is denoted by Ki,j. Note that K1,i does not
necessarily contribute to the local symmetry of the network;
hence, in the following discussion, only Kn,i with n	2 will
be considered.

For any symmetric biclique KV1,V2
in a network, if there

does not exist a symmetric biclique KV1�,V2�
such that V2=V2�

and V1�V1�, we call KV1,V2
a maximal symmetric biclique in

the network. For example, in the network shown in Fig. 2�b�,
we can find three symmetric bicliques K�v3,v4�,�v1,v2�,
K�v5�,�v1,v2�, and K�v3,v4,v5�,�v1,v2�. Furthermore, we can easily
check that K�v3,v4,v5�,�v1,v2� is the maximal one; it is the union
of two other symmetric bicliques.

Recall that two graphs are the same graph if and only if
they have the same vertex set and the same edge set; other-
wise, these two graphs will be distinct from each other. In the
following sections, we will consider only the number of dis-
tinct maximal symmetric bicliques for Kn,i with n	2, which
implies that if there exist two symmetric bicliques KV1,V2

and
KV1�,V2�

such that V2=V2�, we shall merge the two bicliques
into a larger biclique KV1�V1�,V2

; and these three symmetric
bicliques will be counted as only one occurrence of symmet-
ric bicliques in this graph.

Based on the above concepts, we can easily find all sym-
metric bicliques in a network. First, we use N�V� to denote
the subgraph consisting of a vertex set V as well as its inci-

3In �32�, a more concise characterization of the symmetric bi-
clique in the context of algebraic graph theory is also given, where
symmetric bicliques are characterized as complete bipartite sub-
graphs invariant under the action of Aut�G�.

4Lagrange’s theorem states that, if H is a subgroup of G and G is
a finite group, then �G�= �H� · �G :H�, where �G :H� is the number of
different cosets.

Kn,1
v0

v1 vnv2

K3,2
v1 v2

v5v4v3(a (b

FIG. 2. Illustration of symmetric bicliques. �a� shows an ex-
ample of Kn,1, which contributes to the size of the automorphism
group of the network with a factor n!. �b� shows an example of K3,2,
which contributes to the size of the automorphism group of the
network with a factor 3!.
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dent edges. For example, as shown in Fig. 2�b�, if V
= �v3 ,v4 ,v5�, then N�V� is just the K3,2 that has been marked
by a dotted ellipse. Please note that, even though v1 and v2
are adjacent, the edge �v1 ,v2� should not belong to N�V�.
The procedure to enumerate all distinct maximal symmetric
bicliques is shown as follows.

For each i	1, we find the corresponding vertex set con-
sisting of vertices with degree i, denoted by V�i�. Then, for
each V�i�, we partition V�i� into �V�i�1 ,V�i�2 , . . . ,V�i�k�, ac-
cording to the equivalence of the neighbor set of each vertex
in V�i�, which means that vertices with the same neighbors
are classified as the same class. Then, each N�V�i� j� will be
identified as a symmetric biclique in the form of Kn,i with
n= �V�i� j� �Please note that N�V�i� j� with �V�i� j�=1 will be
ignored in the statistics in Table I.�

B. Similar linkage pattern

From the above definition of symmetric bicliques, we can
see that in such bicliques vertices in V1 have the same degree
and share the same neighbors, which is just the meaning of
the phenomenon that we called similar linkage pattern. Thus,
if real networks contain significant numbers of such symmet-
ric bicliques, similar linkage pattern must play an important
role in network evolution. Hence, we will summarize the
statistics of symmetric bicliques in real networks to explore
similar linkage pattern.

In Table I, we count the number of distinct maximal sym-
metric bicliques for Kn,i with n	2 and record the corre-
sponding maximal and minimal sizes of the bicliques in Kn,i.
We can see that similar linkage pattern is a universal phe-
nomenon in the process of structure construction of many
real networks, including social, biological, and technological
networks. For instance, for Kn,1 in InternetAS, there are to-
tally 916 symmetric bicliques, among which there exist some

larger symmetric motifs, e.g., the maximal motif has 343
vertices in V1. For all the networks we tested, simple sym-
metric motifs such as Kn,1 and Kn,2 can be frequently ob-
served. Moreover, for some networks, e.g., the BioGrid net-
work DRO, complex symmetric motifs, i.e., Kn,i with larger
i, frequently occur. As shown in Fig. 3, among those simple
symmetric bicliques with i=1,2, the biclique size distribu-
tions are right skewed with a long tail for larger sizes, which

TABLE I. Symmetric biclique statistics of a variety of real networks. We measure the size of the networks by the number of vertices and
edges, denoted by N and M, respectively. For each i�7, the statistics of distinct maximal symmetric bicliques contained in Kn,i with n
	2 is summarized. We use a triple �S,Min,Max� to show the statistics of Kn,i, where S is the number of distinctive maximal Kn,i, and Min
and Max are the minimal and maximal sizes of symmetric bicliques �the size of a symmetric biclique KV1,V2

is measured by �V1��,
respectively. If Kn,i does not appear in the network, S=0, and Min and Max are not available; this is denoted by a dash. For some larger i,
corresponding statistics of Kn,i are also given.

i in Kn,i with n	2

Network 1 2 3 4 5 6 7 Some larger i

arXiv �30�a �135,2,7� �42,2,4� �17,2,3� �13,2,2� �11,2,2� �1,2,2� �2,2,2� i=16,�1,2,2�
InternetASb �916,2,343� �1057,2,285� �90,2,25� �9,2,4� �2,2,2� �0,–,–� �0,–,–� �0,–,–�

BioGrid �33�
SAC �51,2,15� �7,2,5� �0,–,–� �0,–,–� �0,–,–� �0,–,–� �0,–,–� �0,–,–

MUS �7,2,44� �8,2,12� �4,2,6� �2,2,2� �0,–,–� �1,2,2� �0,–,–� �0,–,–�
HOM �366,2,44� �53,2,12� �21,2,6� �5,2,2� �2,2,2� �1,2,2� �0,–,–� i=8,10,21,�1,2,2�
DRO �418,2,40� �16,2,11� �6,2,3� �6,2,3� �3,2,2� �0,–,–� �3,2,3� i=8,10,21,�2,2,2�, i=15,27,�1,3,3�

i=17,18,19,23,25 �1,2,2� i=39,�1,6,6�
CAE �245,2,47� �9,2,5� �1,2,2� �0,–,–� �0,–,–� �0,–,–� �0,–,–� �0,–,–�

USPowerGrid �8� �137,2,9� �25,2,3� �0,–,–� �1,2,2� �0,–,–� �0,–,–� �0,–,–� �0,–,–�
aHere, the snapshot at 2006-03 of hep-th �high-energy physics theory� citation graph �30� is used.
bHere, the snapshot at 2006-07-10 of CAIDA �31� is used.
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FIG. 3. �Color online� Size distribution of symmetric bicliques
for real networks. The horizontal axis for each panel is the size of
symmetric bicliques and the vertical axis is the occurrence fre-
quency of the symmetric bicliques with the corresponding size. �a�
and �b� show the biclique size distribution of the Internet at the
autonomous level. Here, the snapshot at 2006-07-10 of CAIDA �31�
is used for Kn,1 and Kn,2, respectively. �c� shows the biclique size
distribution of Kn,1 of D. melanogaster �33�. �d� shows the biclique
size distribution of Kn,1 of H. Sapiens �33�.
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implies that a certain number of larger symmetric bicliques
do exist in these real networks.

Following the general scheme for detecting statistically
significant topological patterns �34�, we compare the statis-
tics of symmetric bicliques to that summarized from an en-
semble of Erdös-Rényi �ER� �35� randomized networks
which preserve certain low-level topology properties �here,
we just preserve the overall number of vertices and the av-
erage degree of real networks�.5 We find that similar linkage
pattern does not tend to happen in corresponding ER random
networks. As shown in Table II, randomized networks having
the same size as the corresponding real networks have fewer
symmetric motifs in the form of Kn,1, and the complexity of
the motifs in randomized networks is much lower than that
of the corresponding real networks. We also summarized the
statistics for Kn,i with i	2, which is omitted in the table.
When i=2, for all eight real networks tested, the correspond-
ing occurrence probability of Kn,i in randomized networks,
which is defined as the fraction of the number of randomized
networks in which Kn,i will occur divided by the number of
overall sampled randomized networks �here 100 samples are
used�, is less than 6%; and when i	3, the occurrence prob-
ability of Kn,i is 0. Thus, large or complex symmetric bi-
cliques have less chance to appear in randomized networks.

The frequent occurrence of complex Kn,i in real networks
and the infrequent occurrence of complex Kn,i in random
networks strongly suggest that the occurrence of symmetric
bicliques in real networks is statistically significant �it is just
in this sense that these symmetric bicliques are referred to as
symmetric motifs�, which implies that there exist some laws
dominating the structure construction process of real net-
works.

Consider the dynamic process of network growth. We as-
sume that at some time a new vertex v joins a symmetric
biclique KV1,V2

of a network, and that the new substructure
KV1��v�,V2

is still a symmetric biclique; then v will attach to
all vertices in V2. Thus, it is reasonable to believe that the
newly added vertex v will be attached to the existing vertices
under the principle of preferentially linkage to those vertices
to which other vertices in V1 attach. Since vertices in V1 have
the same degree, it is likely that vertices having the same
degree will have the same neighbors.

C. Nonexact similar linkage pattern

However, as shown in Fig. 4, in real networks, it is pos-
sible to find bicliques in which vertices having the same
degree tend to share only some of their neighbors rather than
exactly the same neighbors. Furthermore, we can check that
these local motifs exhibiting nonexact similar linkage behav-
ior also have the chance to contribute to the symmetry of the
network. These local substructures are generalizations of
symmetric bicliques, such that the structural constraint of the
clique is relaxed from being completely bipartite to satisfy-
ing only the requirement that all the vertex of V1 have the
same degree in the clique. Hence, this kind of generalized
symmetric biclique6 can be formally defined as a bipartite
KV1,V2

such that for each v�V1, deg�v�=d, where deg�v� is
the degree of vertex v and d is a constant. Thus, d becomes

5Although it is desired to preserve the degree of an individual
vertex in a meaningful randomization process �41�, to explore the
statistical significance of the occurrence of symmetric bicliques, we
need to relax the constraint of degree preservation due to the fact
that statistics of symmetric bicliques strongly rely on the degree
distribution of the networks.

6Note that the concept of a dense overlapping regulon �DOR� �42�
is also bipartite; however, the DOR is not necessarily a generalized
symmetric biclique, i.e., it does not necessarily satisfy the condition
that the degrees of vertices in one bipartite system are a character-
istic constant.

TABLE II. Symmetry biclique statistics for ER random net-
works. For each network tested in Table I, we generate 100 ER
random networks with the same size as the real networks using
PAJEK �36�. We use two parameters, the vertex number N and the
average degree z, to ensure that the simulated ER random networks
have the same size as the corresponding real networks. Similar to
the results in Table I, for each i, we summarized the number of
occurrences of Kn,i in randomized networks, which is represented
by the statistics Nrand
SD with Nrand denoting the average number
of occurrences of Kn,i over all randomized networks and SD repre-
senting the standard deviation of the number of occurrences of Kn,i

over all randomized networks. For each i, we also summarized the
minimal and maximal sizes of Kn,i over all 100 randomized net-
works, respectively.

Network N z Nrand
SD for Kn,1 with n	2

arXiv 27770 25.37 �0
0,–,–�
InternetAS 22442 4.06 �53.66
7.87,2,4�

BioGrid

SAC 5437 26.86 �0
0,–,–�
MUS 218 3.65 �0.88
0.94,2,3�
HOM 7522 5.32 �2.45
1.49,2,2�
DRO 7528 6.69 �0.25
0.54,2,2�
CAE 2780 3.13 �24.27
5.33,2,4�

USPowerGrid 4941 1.49 �222.86
14.70,2,5�

v1 v2

v5 v6

v3 v4 v1 v2

v5 v6

v3 v4 v1 v2

v5 v6

v3 v4

v7 v8

(a) (b) (c)

FIG. 4. Illustration of nonexact similar linkage pattern. All ver-
tices in V1, i.e., dark vertices, have the same degree. However, the
neighbors of these vertices are not exactly the same. Motifs consist-
ing of V1 as well as their incident edges do not necessarily contrib-
ute to the local symmetry of networks. In �a�, the subgraph marked
by a dotted ellipse will not lead to any automorphism, while the
subgraph marked by a dotted ellipse in �b� will result in an auto-
morphism p= �v1 ,v4��v5 ,v6� and the subgraph marked by a dotted
ellipse in �c� also contributes an automorphism p
= �v1 ,v4��v5 ,v6��v7 ,v8� to the symmetry of the graph.
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a characteristic of the generalized symmetric biclique. We
often denote it as KV1,V2

d . In some cases when V2 is not sig-
nificant, KV1

d or K�V1�
d is often used.

In a network, if nonexact similar linkage pattern does
make sense, then vertices with the same degree will tend to
share some of their neighbors. Thus, we need to measure to
what extent these vertices share the same neighbors. Let
V�m�= �v :v�V and deg�v�=m� be all vertices with degree
m; then the neighbors of these vertices can be denoted as
V��m�= �v� : �v ,v���E and v�V�m��. Then we can define
�m as the ratio of the actual number of distinct neighbors of
V�m� to the maximal probable number of distinct neighbors
of V�m�, as shown in Eq. �3�. Note that the maximal set of
neighbors of V�m� can be obtained when any pair of vertices
in V�m� share no neighbors. �m can be used to quantify the
overlap ratio of neighbors of vertices in V�m�:

�m =
�V��m��
m�V�m��

. �3�

From the above equation, we have an immediate conse-
quence 0��m�1. If �Vm� is given, we have 1

�V�m�� ��m�1.
Note that the lower �m is, the more common neighbors ver-
tices in V1 tend to share. As shown in Fig. 5, for small values
of the degree, all tested networks tend to have relative small
�m, which strongly suggests that for these real networks, in
the process of network growth, vertices with the same small
degree tend to share common neighbors.

Please note that �m is a global measure on the whole
network, which is a function of the degree m and indicates to
what extent vertices with degree m tend to share common
neighbors. In fact, �m also can be considered as the quanti-
fication of neighbor overlap of the whole network. However,
we must note that a variety of local measures are available to
measure neighbor overlap in the network, such as structural
similarity �37,38� measures and topological overlap �13�.
Structural similarity measures, such as the Jaccard index �39�
and cosine similarity �40�, are used to measure the similarity
of vertices solely based on structural information of net-
works, while topological overlap is used to quantify to what
extent two vertices tend to belong to the same module. In
spite of the differences, all the above measures including �m

are based on the same principle that the number of common
neighbors is a significant indication of the similarity between
two vertices.

IV. MODEL FOR SYMMETRY

It has been shown that a variety of real networks have
power-law degree distribution �1,3,7�, which can be attrib-
uted to two basic ingredients: �1� growth and �2� preferential
attachment �4�. In the BA model, new vertices will be con-
tinuously added to the existing networks, and at each time
step, a new vertex is preferentially attached to m existing
highly connected vertices. We define the number m, i.e., the
number of neighbors that a vertex v is linked to at the time
when the vertex was added to the network, as the initial
degree7 of the vertex. In the BA and other improved models,
whether m is fixed or not is not significant for the resulting
degree distribution �choosing m randomly will not change
the exponent of the degree distribution �4��; hence usually
the initial degree is considered as a constant. However, in our
model, which considers symmetry, m should not be treated as
a constant, which is significant for the reproduction of sym-
metry in real networks.

Although many network generation models are available,
ingredients producing symmetry have not been considered in
the BA model and other network generation models. To re-
produce symmetric networks with power-law degree distri-
bution, we propose a network model incorporating similar
linkage pattern into the BA model’s two ingredients. For this
purpose, the BA model’s two principles are modified as fol-
lows.

�1� Newly added vertices are linked to the existing verti-
ces not only under the principle of preferential attachment,
but also that of similar linkage pattern. The latter principle
implies that newly added vertices with initial degree m tend
to link to the targets to which existing vertices with degree m
in the network are linked.

�2� The initial degree m of newly added vertices follows a
certain distribution instead of being a constant value. In the
BA and other existing models, the initial degree is constant;
however, in the following sections, we will show that in
some real networks, m follows a certain distribution.

A. Preferential attachment with similar linkage pattern

The probability, denoted by �vi�, that a new vertex with
initial degree m will be connected to vertex vi relies not only
on the degree ki of vertex vi but also on whether vi belongs
to Vt��m� �we use Vt�m� to denote the set of vertices with
degree m in the network at time t and Vt��m� to denote the set
consisting of neighbors of Vt�m��. To incorporate the ingre-
dient of similar linkage pattern into the basic BA model, we
need to increase �vi� for those vi belonging to Vt��m�. In
addition, we need to define the parameter � to control the
relative significance of similar linkage pattern in the forma-
tion of network structure. Note that, for a given m, Vt��m� is

7The initial degree defined here can be considered as one kind of
“fitness” or “hidden variable” of vertices in the network �43,44�.
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not necessarily nonempty. Hence the probability �vi� is de-
fined in two cases: when Vt��m�=0” , then �vi� should be
defined as

�vi� =
ki

�
j

kj

, �4�

where ki is the degree of vertex vi; when Vt��m��0” , �vi�
should be defined as

�vi� =	�
ki

�
j

kj

+ �1 − ��
1

�Vt��m�� if vi � Vt��m� ,

�
ki

�
j

kj
if vi � Vt��m� ,


�5�

where �� �0,1�.
At some time step t, we may have Vt��m�=0” . Conse-

quently, in this case, attachment of vertices will be reduced
to purely preferential attachment in terms of the value of the
degree. It will happen frequently in the initial stages of net-
work growth in our model, because the abundance of the
degree is limited in the initial stage, due to the relative small
size of the seed network. For example, if the seed network
contains only isolated vertices, then only degree 0 will be
found; if the seed network is a regular network, e.g., a com-
plete network, we could also find only one degree in the
network.

Equation �5� has only one parameter � to control the rela-
tive significance of purely preferential attachment and simi-
lar linkage pattern. It is clear that the larger � is, the less will
be the impact of similar linkage pattern on the network.
When �=1, the model is reduced to purely preferential at-
tachment according to the vertex degree.

B. Initial degree following a certain distribution

In the BA and other improved models, all vertices except
for the seed vertices have the same initial degree. However,
for some networks, especially social and technilogical net-
works, where historical data about the initial degree of real
networks are available, we can show that the initial degree of
these real networks may be far away from a fixed value or a
value independent of degree. For example, Fig. 6 shows the
distribution of initial degree of a citation network con-
structed from the arXiv data set. From this figure, we can see
that the frequency of the initial degree of vertices follows a
right-skewed distribution instead of being a fixed value.

Assume that we grow the network in a way following the
principle of preferential attachment with similar linkage pat-
tern. If the initial degree is constant, then each time a new
vertex is added to the network, a fixed number �m� of edges
will be introduced into the network. Thus, the local symmet-
ric motifs will concentrate on those subgraphs with structure
closer to KV1

m . If m is very much larger than 1, it is contra-
dictory to the observation in Table I that the larger n is, the

less frequently KV1

n tends to occur in real networks.
Therefore, it is necessary to extend the initial degree from

a fixed value to a certain distribution. From this perspective,
the BA model can be considered as a special case of our
model, where the initial degree distribution is specified as a
constant value.

C. Network model based on similar linkage pattern

The algorithm for network growth incorporating the in-
gredient of similar linkage pattern is the following.

�1� Growth. Starting from a small number �n0� of isolated
vertices, at every time step, we add a new vertex with m
edges that link the new vertex to m different vertices already
present in the system, where m follows a distribution F�m�
with m� m̄ �m̄ is the upper bound of the initial degree, called
the maximal initial degree.�.

�2� Preferential attachment with similar linkage pattern.
The probability  that a new vertex will be connected to
vertex vi is defined by Eqs. �4� and �5�.

The above improved model based on similar linkage pat-
tern just needs three input parameters (n0 ,F�m� ,�). For no-
tational convenience, the model is denoted by
SLP(n0 ,F�m� ,�), where SLP indicates similar linkage pat-
tern.

As shown in Fig. 7�a�, with � varying from 1 to 0.1, i.e.,
with similar linkage pattern becoming more significant in the
network construction, the size of the automorphism group of
networks continuously increases through several hundreds of
orders of magnitude. The insets �I� and �II� of Fig. 7�a� show
that two other symmetry indices �G and �G also increase
with the decrease of �. Such facts also can be observed from
Figs. 7�b�–7�d�. Hence, it is reasonable to believe that similar
linkage pattern is responsible for the emergence of symmetry
in the networks.

With increase of the size of the SLP network, the symme-
try indices have different trends. As shown in Fig. 7�b�, the
automorphism group size grows exponentially with growth
of the network. In contrast, �G decreases in a power-law way
with the growth of the network, as shown in Fig. 7�c�. �G
reaches a steady state when N→�, as shown in Fig. 7�d�.

If we remove the ingredient of similar linkage pattern, we
can show that the ingredient of preferential attachment with
initial degree following a distribution will not necessarily
reproduce the symmetry of networks. For this purpose, we
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FIG. 6. �Color online� Distribution of initial degree of arXiv
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generate SLP networks with � set as 1 to eliminate the in-
gredient of the similar linkage pattern. We tune the value of
the average degree8 �k� and the exponent � of the power-law
initial-degree distribution, to observe the growth trend of the
symmetry indices. The result is shown in Fig. 8, where we
can see that only for small average degree �k� and large ���
can obvious symmetry be observed. In any other case, the
symmetry in the corresponding networks is limited and thus
can be ignored.

As shown in Fig. 8, when the average degree �k� is small
�close to 1�, the network has a higher degree of symmetry.
Note that those networks with �k� closer to 1 tend to have a
tree structure, and it is desirable for the tree to have a higher
degree of symmetry. This result conforms to the result re-
ported in �22� that BA random trees and uniform random
trees have high degrees of symmetry.

As shown in Figs. 8�a�–8�c�, for small ���, when �k� in-
creases, the symmetry of the network rapidly decays to a
constant level. The symmetries at such constant levels are

determined by the exponents of the power-law initial-degree
distribution, which can be validated by the observation that
the steeper the double-logarithmic initial-degree distribution
is, the higher is the symmetry level.

We can also see that when �=0, i.e., the slope of the
double-logarithmic distribution plot is zero, the symmetry
indices of networks rapidly decay to zero or values close to 0
as �k� increases. However, with the slope becoming steep,
the symmetry of the network rapidly decays to an approxi-
mately constant value far larger than 0. Thus, for a steep
log-log initial-degree distribution, an obvious degree of sym-
metry would be observed.

Such observed symmetries can be naturally interpreted.
Note that steeper initial-degree distribution will result in a
higher probability of smaller initial degrees m, especially m
=1. As a result, more treelike symmetry will be found in the
structure of the network. The correlation between skewness
of the initial-degree distribution and abundance of treelike
symmetries can be observed from Fig. 8�d�, where the num-
ber of Kn,1 increases with the growth of ���. Furthermore, the
data in Table III shows that the complexity and the size of
Kn,1 also increase with the growth of skewness of the double-
logarithmic initial-degree distribution.

Thus, it is rational to conclude that solely preferential
attachment with the initial degree following a distribution

8In our study, for convenience of notation, the average degree �k�
is defined as M /N, where N and M are the numbers of vertices and
edges, respectively. Obviously, �k� is one-half of the actual average
degree.
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FIG. 7. �Color online� Effect of � and size on symmetry of networks generated by the SLP model. �a� shows a simulation of the SLP
model with � varying from 0.1 to 1 in increments of 0.1. The horizontal axis of the figure as well as the two insets �I� and �II� is �; the
vertical axis of the figure is log10�G, and the vertical axes of the inset figures �I� and �II� are �G and �G, respectively. In the simulations, we
use n0=10, m̄=10, t=10 000 and employ two kinds of initial-degree distributions. Blue squares ��� show an exponential distribution
F�m�=a�−m with �=3; red circles ��� show a power-law distribution F�m�=am� with �=−1. �b�, �c�, and �d� show the growth of symmetry
indices including log10�G,�G, and �G�%� of networks generated by the SLP model. In the simulations shown in �b�–�d�, a power-law
initial-degree distribution is employed with m̄=10 and �=−1; we fix n0 as 10 and vary � from 0.1 to 1 in increments of 0.1 �the arrow shows
the direction of increasing ��. We vary t from 0 to 5000 and capture snapshots of the network every 50 units of time; thus we could get 100
samples of networks with linearly increasing sizes. Clearly, for all �, the growth of automorphism group size �G shows an obvious
exponential trend, the decrease of �G shows a power-law trend, and limN→� �G=����. When � varies from 0.1 to 1, all three symmetry
indices decrease. The inset of �c� is an amplified local plot, which clearly shows that �G decreases with the growth of �.
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will not necessarily reproduce the symmetry of networks.
Only in those cases where small initial degrees have a higher
probability of occurrence, especially m=1, will produce a
treelike symmetry of networks. To reproduce the higher
probability of smaller initial degrees, we need to decrease the
maximal initial degree or increase the slope of the initial-
degree distribution.

V. CONCLUSION

In summary, by studying the statistics of certain local
symmetric motifs including �generalized� symmetric bi-

cliques in many real networks, we found that similar linkage
pattern plays an important role in the origin of symmetry of
networks. To incorporate this ingredient into the BA model,
we modified it in two respects: �1� we extended the initial
degree from a constant value to a distribution; and �2� we
increased the link probability of the target vertices. Simula-
tions showed that similar linkage pattern was responsible for
the emergence of symmetry of networks, while preferential
attachment with the initial degree following a distribution
would only reproduce treelike symmetry in some cases.

TABLE III. Statistics of Kn,1 in some SLP networks with power-law initial-degree distribution. All the
parameters are set the same as in Fig. 8�d�. In this table, we record the number and the minimal and maximal
sizes of Kn,1 with � as one of �0,−0.5,−1 ,−1.5,−2� and �k� as one of �3.5,4,4.5,5�.

�

�k� 0 −0.5 −1 −1.5 −2

3.5 �35,2,4� �76,2,11� �137,2,10� �222,2,14� �295,2,26�
4 �35,2,5� �85,2,5� �149,2,6� �240,2,9� �281,2,41�

4.5 �36,2,4� �67,2,10� �121,2,9� �192,2,18� �251,2,47�
5 �26,2,4� �57,2,5� �113,2,6� �220,2,16� �246,2,40�
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FIG. 8. �Color online� Effect of average degree �k� on symmetry of networks generated by preferential attachment with initial degree
following a power-law distribution F�m�=am�. In this simulation, we use �=1 to eliminate the influence of similar linkage pattern. Other
parameters are set as n0=10, t=5000, and �=0,−0.5,−1 ,−1.5,−2. For each �, we vary �k� from 1 to 5 in increments of 0.5 through
increasing m̄. Given a power-law initial-degree distribution F�m�=am� and upper bound m̄, we can calculate �k�=�1�m�m̄mF�m�
=�1�m�m̄mam�=�1�m�m̄m1+� /�1�m�m̄m�. Then, for each �, for each �ki�, we increase m̄ from 1 step by step, calculate the �km̄� by the
above equation, and, if the value is in the range of �ki�
0.25, we let �ki��km̄�. �a�–�c� show the trend of automorphism group size log10�G,
�G, and �G �%� with the growth of the average degree of the network, respectively. It is clear that symmetry of the network will rapidly
�superlinearly� decrease to a constant level for less steep initial-degree distribution. �d� shows the relation between the number of local
structures Kn,1 and the slope ����� of the power-law initial-degree distribution for average degree as one of �5,4.5,4,3.5�. Parameters in �d� are
the same as in �a�–�c�. Clearly, with the increase of ���, more Kn,1 will occur as substructures of the network.
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The fact that the occurrence of symmetric bicliques is
statistically significant in real networks strongly suggests that
the behavior of individual vertices is not randomized but
determined by a certain organization principle, which we re-
ferred to as similar linkage pattern. A significant conse-
quence of similar linkage pattern is the richness of symmetry
in the whole real network. Symmetry, as a universal property
in real networks �22,32�, provides a new perspective for ex-
ploring the static and dynamic properties of complex sys-
tems. From this viewpoint, we have proposed a model of
network growth which is able to reproduce the symmetry in
real networks. This will make the network modeling of real
systems more accurate.

An interesting area for future studies, but lacking in this
study, is to perform a comprehensive theoretic analysis of the
properties of this network model, which allows us to gain
deeper insight into the network-generating model reproduc-
ing symmetry.
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